Close your eyes and gently rub the outside corner of one eye. Press a little harder. What do you see?
According to Professor Wolfe, whose talk was titled "Ten Things You Can Learn by Poking Yourself in the Eye," "what you're seeing is the result of mechanically stimulating tissue that is ordinarily stimulated by light." In other words, the signals sent to the brain from the rubbing were interpreted as light, "even though you know [the signals] were caused by your finger."
As Professor Wolfe tried the technique again, he noted that what he was "seeing" also appeared to be a little bluish. "That's due to stimulating rods [one group of light-sensitive bodies], which are around the corners of the eye," he said. (Cones, the other group of light-sensitive bodies, are located more in the center of the eye.)
If you're like many of the approximately 50 participants at a talk last week by Jeremy Wolfe, visiting associate professor in brain and cognitive sciences, you saw a small white spot, or a black spot with a white rim. But where does the spot come from? What causes it?
And so began a series of demonstrations in eye-poking that taught more than 10 things about the eye and visual phenomena. Some of these are summarized above and below.
In one demonstration-an example of advanced eye-poking-Professor Wolfe asked the audience to "take a couple of fists and push straight back on your eyes. Notice the patterns that appear."
One person described seeing black and white checkers. Another expanded on that by noting that the squares of the checkerboard appeared to grow larger with distance from the center.
Professor Wolfe acknowledged that "we don't actually know what [that checkerboard] is, but it looks like you could be looking at your own visual cortex," or the part of the brain that handles vision.
Further, he continued, the growth of the checkerboard squares could correspond to the organization of the visual cortex. The small "squares" in the center represent cells that can make out fine details. These cells don't extend across the whole visual field because the human brain isn't big enough to process all of the information that would come in if they did. So with distance from the center, cells get progressively larger and less capable of making out details.
In a brief aside, Professor Wolfe noted that some people see the same sort of "checkerboard" effect during migraine headaches. Here, he said, "you're almost definitely seeing your visual cortex."
Another demonstration involved slowly pressing on an eyelid, with the eyes open, while focusing on a certain object-in this case Professor Wolfe's nose. "Notice that I appear to move from side to side," he told the audience. "But where [is your brain] getting the signal for motion? With slow pushes, your eye is not moving." It turns out, he said, that by pressing on the eye "you're stretching your eye muscles." And these muscles have receptors in them that are telling the brain that the eye is actually in a different position. "So the brain says, `the eye must have moved.'"
This happens, Professor Wolfe said, because "the brain is continuously trying to make the best of a bad deal in terms of what you're seeing."
Throughout his talk Professor Wolfe encouraged questions and explained what members of the audience said they were seeing. He was stumped, however, after one demonstration when a participant described "lots of color, then swirls, then a butterfly."
A version of this article appeared in the January 27, 1993 issue of MIT Tech Talk (Volume 37, Number 20).
Via:
Empresas, Colegios, Psicoterapia, Programas de Reducción de Estrés
sábado, 6 de agosto de 2011
Neuroscientists Identify How the Brain Remembers What Happens and When
New York University neuroscientists have identified the parts of the brain we use to remember the timing of events within an episode. The study, which appears in the latest issue of the journal Science, enhances our understanding of how memories are processed and provides a potential roadmap for addressing memory-related afflictions.
Neurocientíficos de la Universidad de Nueva York, identificaron las partes del cerebro que se utilizan para recordar el tiempo de los eventos dentro de un episodio. El estudio, que aparece en el último número de la revista Science, mejora nuestra comprensión de cómo los recuerdos se procesan; y se ofrece una guía básica para hacer frente a potenciales problemas mnésicos.
Vía:
http://www.sciencedaily.com/releases/2011/08/110804141701.htm
Neurocientíficos de la Universidad de Nueva York, identificaron las partes del cerebro que se utilizan para recordar el tiempo de los eventos dentro de un episodio. El estudio, que aparece en el último número de la revista Science, mejora nuestra comprensión de cómo los recuerdos se procesan; y se ofrece una guía básica para hacer frente a potenciales problemas mnésicos.
Vía:
http://www.sciencedaily.com/releases/2011/08/110804141701.htm
viernes, 5 de agosto de 2011
Have We Met Before? Scientists Show Why the Brain Has the Answer
Alguna vez te pasó de acercarte a alguien cuya cara reconociste, pero no pudiste acordarte del nombre? Neurocientíficos de la Universidad de Bristol, indentificaron algunas razones detrás, de porqué a veces no podemos relacionar el rostro con el nombre.
Have you ever been approached by someone whose face you recognize but whose name you can't remember? Neuroscientists at the University of Bristol have identified the reasons behind why we are, at times, unable to link a face to a name.

The research, led by Dr Clea Warburton and Dr Gareth Barker in the University's School of Physiology and Pharmacology and published in the Journal of Neuroscience, has investigated why we can recognise faces much better if we have extra clues as to where or indeed when we encountered them in the first place.
The study found that when we need to remember that a particular object, for example a face, occurred in a particular place, or at a particular time, multiple brain regions have to work together -- not independently.
It has been known for some time that three brain regions appear to have specific roles in memory processing. The perirhinal cortex seems to be critical for our ability to recognise whether an individual object is novel or familiar, the hippocampus is important for recognising places and for navigation, while the medial prefrontal cortex is associated with higher brain functions.
These most recent studies, however, are the first to look at situations where these brain regions interact all together, rather than considering each one individually.
Dr Warburton said: "We are very excited to discover this important brain circuit. We're now studying how memory information is processed within it, in the hope we can then understand how our own 'internal library' system works."
The researchers investigated the neural basis of our ability to recognise different types of stimuli under different conditions. Of specific interest were two types of recognition memory: 'object-in-place recognition memory' (remembering where we put our keys), and 'temporal order recognition memory' (when we last had them).
Neither 'object-in-place' or 'temporal order recognition' memories could be formed if communication between the hippocampus and either the perirhinal cortex, or the medial prefrontal cortex, was broken. In other words, disconnecting the regions prevented the ability to remember both where objects had been, and in which order.
Finding that these regions must all act together has important implications for understanding memory and helping treat people with memory disorders such as Alzheimer's disease.
Have you ever been approached by someone whose face you recognize but whose name you can't remember? Neuroscientists at the University of Bristol have identified the reasons behind why we are, at times, unable to link a face to a name.

The research, led by Dr Clea Warburton and Dr Gareth Barker in the University's School of Physiology and Pharmacology and published in the Journal of Neuroscience, has investigated why we can recognise faces much better if we have extra clues as to where or indeed when we encountered them in the first place.
The study found that when we need to remember that a particular object, for example a face, occurred in a particular place, or at a particular time, multiple brain regions have to work together -- not independently.
It has been known for some time that three brain regions appear to have specific roles in memory processing. The perirhinal cortex seems to be critical for our ability to recognise whether an individual object is novel or familiar, the hippocampus is important for recognising places and for navigation, while the medial prefrontal cortex is associated with higher brain functions.
These most recent studies, however, are the first to look at situations where these brain regions interact all together, rather than considering each one individually.
Dr Warburton said: "We are very excited to discover this important brain circuit. We're now studying how memory information is processed within it, in the hope we can then understand how our own 'internal library' system works."
The researchers investigated the neural basis of our ability to recognise different types of stimuli under different conditions. Of specific interest were two types of recognition memory: 'object-in-place recognition memory' (remembering where we put our keys), and 'temporal order recognition memory' (when we last had them).
Neither 'object-in-place' or 'temporal order recognition' memories could be formed if communication between the hippocampus and either the perirhinal cortex, or the medial prefrontal cortex, was broken. In other words, disconnecting the regions prevented the ability to remember both where objects had been, and in which order.
Finding that these regions must all act together has important implications for understanding memory and helping treat people with memory disorders such as Alzheimer's disease.
Harnessing the Power of Positive Thoughts and Emotions to Treat Depression
Positive activity interventions (PAIs) offer a safe, low-cost, and self-administered approach to managing depression and may offer hope to individuals with depressive disorders who do not respond or have access to adequate medical therapy, according to a comprehensive review article in The Journal of Alternative and Complementary Medicine, a peer-reviewed journal published by Mary Ann Liebert, Inc.
Via:
http://www.sciencedaily.com/releases/2011/08/110803123646.htm
Via:
http://www.sciencedaily.com/releases/2011/08/110803123646.htm
jueves, 4 de agosto de 2011
Cut saturated fat, refined sugar to boost your brain
"Cutting back on saturated fat and refined sugar may do more than lower your risk of high cholesterol, heart disease and Type 2 diabetes. It may also cut the risk of developing memory problems that could advance to Alzheimer’s disease.
According to a study published Monday in the journal Archives of Neurology, a low saturated fat/low glycemic index diet can reduce the concentration of a protein in the brain linked to Alzheimer’s disease. A high saturated fat/high glycemic index diet, on the other hand, can increase the amount of this protein"
Fish and veggies are good for the brain
Parece claro para los neurocientíficos que las grasas saturadas no sólo traen los ya conocidos problemas con el colesterol, complicaciones de nivel cardíaco y diabetes, sino que también afectan al cerebro de forma tal, que podrían acelerar el avance de la enfermedad de Alzheimer.
Por otra parte, estos alimentos reducen la concentración de una proteína relacionada al Alzheimer.
Los pescados y los vegetales son buenos para el cerebro.
Via: http://www.theglobeandmail.com
According to a study published Monday in the journal Archives of Neurology, a low saturated fat/low glycemic index diet can reduce the concentration of a protein in the brain linked to Alzheimer’s disease. A high saturated fat/high glycemic index diet, on the other hand, can increase the amount of this protein"
Fish and veggies are good for the brain
Parece claro para los neurocientíficos que las grasas saturadas no sólo traen los ya conocidos problemas con el colesterol, complicaciones de nivel cardíaco y diabetes, sino que también afectan al cerebro de forma tal, que podrían acelerar el avance de la enfermedad de Alzheimer.
Por otra parte, estos alimentos reducen la concentración de una proteína relacionada al Alzheimer.
Los pescados y los vegetales son buenos para el cerebro.
Via: http://www.theglobeandmail.com
Human Thought Can Voluntarily Control Neurons in Brain/ El pensamiento humano puede controlar voluntariamente a las neuronas
Neuroscience research involving epileptic patients with brain electrodes surgically implanted in their medial temporal lobes shows that patients learned to consciously control individual neurons deep in the brain with thoughts.
La investigaciones en neurociencia, cuyo objeto de estudio son pacientes epilépticos con electródos implantados -medante cirugía- en la zona media del lóbulo temporal, han encontrado que éstos pacientes, conscientemente controlan el movimiento individual de neuronas del cerebro mediante el pensamiento.
Full note/nota completa:
http://neurosciencenews.com/human-thought-can-voluntarily-control-neurons-in-brain/
La investigaciones en neurociencia, cuyo objeto de estudio son pacientes epilépticos con electródos implantados -medante cirugía- en la zona media del lóbulo temporal, han encontrado que éstos pacientes, conscientemente controlan el movimiento individual de neuronas del cerebro mediante el pensamiento.
Full note/nota completa:
http://neurosciencenews.com/human-thought-can-voluntarily-control-neurons-in-brain/
miércoles, 3 de agosto de 2011
La consciencia es el mayor enigma de la ciencia y la filosofía
Estamos lejos de comprender el salto cualitativo que supone pasar de la actividad neuronal del cerebro a la experiencia consciente
La consciencia no es un fenómeno todo-o-nada, sino que existen diversos niveles de consciencia. Y la transición de la inconsciencia a la consciencia no es simplemente un cambio de una inactividad a una actividad neuronal, sino que supone un cambio en lo que hacen las neuronas, cambio que hoy por hoy es desconocido. El dualismo que subyace a algunas de las teorías sobre la consciencia plantea la cuestión de cómo superarlo, ya que este dualismo no ha podido aclarar cómo es posible que un ente inmaterial pueda interaccionar con la materia que es el cerebro. Estamos lejos de comprender el salto cualitativo que supone pasar de la actividad neuronal del cerebro a la experiencia subjetiva de la consciencia.
Resto de la entrada:
http://www.tendencias21.net/La-consciencia-es-el-mayor-enigma-de-la-ciencia-y-la-filosofia_a4026.html
Por otra parte, es interesante hacerle éste mismo plantéo a los yoguis y grandes meditadores. Dado que ellos, desde hace más de 4000 años, a través de la introspección, vienen brindando información que recién en éstos últimos 20, se pudo demostrar científicamente.
Posibles 4 Pilares de la Neurociencia Militar
Resulta bastante complicado pensar en una tecnología que no tenga alguna aplicación en el campo militar. Y al revés: muchas de las que usamos diariamente, como Internet, provienen de alguna investigación original del ejército. La neurociencia no podía ser la excepción, y los militares ya se entusiasman con sus posibles aplicaciones bélicas.
El ejército estadounidense ha creado un comité para evaluar el potencial militar de la neurociencia. De hecho, se publicó un artículo creado por el Departamento de Defensa de los Estados unidos, con el sugestivo (y amplio) título de “Neurociencia Cognitiva Emergente y las Tecnologías Relacionadas”. En este escrito se analizan todas las tecnologías que, potencialmente, podían ser útiles algún día al Departamento mencionado. Obviamente, un cerebro es algo muy útil, incluso para un militar. Aunque, hoy en día, un amplio público sostiene que las bombas y misiles que producen los militares, son más inteligentes que los generales que las accionan.
Por lo tanto, para organizar un poco la cantidad de ideas y aplicaciones posibles se dividieron los campos de estudio en cuatro grupos.
1)Lectura mental El primero de ellos se encarga del desarrollo de todas las tecnologías que se relacionan con la lectura mental. Seguramente estas pensado que esto de intentar “leer” lo que otro esta pensando pertenece más al campo de los estafadores de feria que a la ciencia, pero te equivocas. La idea del ejército está más cerca de los nuevos modelos de mandos utilizados en los ordenadores personales que en la parapsicología. Básicamente, en este apartado se encuentran las tecnologías relacionadas con análisis de modelos psicológicos e imágenes neurológicas que permitan determinar, por ejemplo, si una persona está mintiendo o no.
2) Drogas militares El segundo grupo de interés de relaciona con la posibilidad de desarrollar drogas capaces de proveer algún tipo de aumento cognitivo. Serían sumamente útiles en el campo de batalla, donde un soldado debe permanecer despierto y alerta durante varios días. Y, ya puestos a pensar en drogas “milagrosas” (recordemos que en general las tropas no son precisamente un buen ejemplo de la iniciativa propia), también se plantean la creación de drogas que permitan dar fuerzas casi sobrehumanas a quienes las tomen. Algo así como la “stamina” de algunos juegos de ordenador, pero de verdad.
Por supuesto, drogas capaces de tener el efecto contrario, para utilizar en contra de los enemigos de turno, también son más que deseables. Si logran desarrollar algo que, aplicado en el agua o esparcido en el aire, destruya las habilidades físicas o mentales de las fuerzas enemigas, seguramente tomaran buena nota de la formula e intentarán llevarlas al campo de batalla.
Recordar que se utilizó LSD-025, y los soldados de las tropas americanas, terminaron trepados a los árboles, usando las escopetas como pipas para fumar y alimentando a las aves. También se dice que se utilizó la misma sustancia para enloquecer un pequeño pueblo francés.
3)Control Mental El tercer grupo de tecnologías se enfocan en el control mental. Básicamente, todo aquello que pueda hacer de nuestro libre albedrío algo del pasado. El objetivo de máxima es conseguir un tipo de arma (de alguna manera hay que llamarla) que, por ejemplo, haga que la gente se comporte de formas que no son las normales. Una de las ideas en danza es la de lograr que nuestros ciudadanos nos crean cada vez que decimos algo, o que el enemigo sienta un miedo profundo que le impida operar con eficacia. Si, también creemos que esta gente mira mucha TV, pero seguramente algo de todo esto va a funcionar.
El proyecto HAARP es un proyecto que según la teoría de las conspiraciones, se está desarrollando en Alaska, un arma que nos crearía una visión holográfica de la realidad. Esa arma, tomaría la información que nosotros cargamos en facebook,u otras redes sociales para crearnos una realidad como la que a nosotros nos gustaría vivir, de ahí que seríamos fácilmente engañables y exterminables.
4)Cerebro-máquina Y el cuarto apartado se refiere a las tecnologías que permitan conectar nuestros queridos cerebros (o los de sus tropas, en realidad) a las máquinas. Ya que, como sabemos, el ejército va incorporando gradualmente mayores porcentajes de robots entre sus filas, no estaría nada mal poder hacer que los encargados de dirigirlos puedan hacerlo directamente con sus cerebros.
¿Alguien se acuerda del cerebro de las tortugas ninjas?
Estas son algunas de las muchas ideas que están dando vuelta por los escritorios y laboratorios de estos científicos que parecen bastante tomadas de los pelos. Sin embargo, y en parte gracias al abultado presupuesto que manejan, es casi seguro que alguna llegue a transformarse, en algunos años, en una realidad. Se nos plantea un futuro, como mínimo, inquietante.
http://www.guardian.co.uk/science/2008/aug/13/military.neuroscience
El ejército estadounidense ha creado un comité para evaluar el potencial militar de la neurociencia. De hecho, se publicó un artículo creado por el Departamento de Defensa de los Estados unidos, con el sugestivo (y amplio) título de “Neurociencia Cognitiva Emergente y las Tecnologías Relacionadas”. En este escrito se analizan todas las tecnologías que, potencialmente, podían ser útiles algún día al Departamento mencionado. Obviamente, un cerebro es algo muy útil, incluso para un militar. Aunque, hoy en día, un amplio público sostiene que las bombas y misiles que producen los militares, son más inteligentes que los generales que las accionan.
Por lo tanto, para organizar un poco la cantidad de ideas y aplicaciones posibles se dividieron los campos de estudio en cuatro grupos.
1)Lectura mental El primero de ellos se encarga del desarrollo de todas las tecnologías que se relacionan con la lectura mental. Seguramente estas pensado que esto de intentar “leer” lo que otro esta pensando pertenece más al campo de los estafadores de feria que a la ciencia, pero te equivocas. La idea del ejército está más cerca de los nuevos modelos de mandos utilizados en los ordenadores personales que en la parapsicología. Básicamente, en este apartado se encuentran las tecnologías relacionadas con análisis de modelos psicológicos e imágenes neurológicas que permitan determinar, por ejemplo, si una persona está mintiendo o no.
2) Drogas militares El segundo grupo de interés de relaciona con la posibilidad de desarrollar drogas capaces de proveer algún tipo de aumento cognitivo. Serían sumamente útiles en el campo de batalla, donde un soldado debe permanecer despierto y alerta durante varios días. Y, ya puestos a pensar en drogas “milagrosas” (recordemos que en general las tropas no son precisamente un buen ejemplo de la iniciativa propia), también se plantean la creación de drogas que permitan dar fuerzas casi sobrehumanas a quienes las tomen. Algo así como la “stamina” de algunos juegos de ordenador, pero de verdad.
Por supuesto, drogas capaces de tener el efecto contrario, para utilizar en contra de los enemigos de turno, también son más que deseables. Si logran desarrollar algo que, aplicado en el agua o esparcido en el aire, destruya las habilidades físicas o mentales de las fuerzas enemigas, seguramente tomaran buena nota de la formula e intentarán llevarlas al campo de batalla.
Recordar que se utilizó LSD-025, y los soldados de las tropas americanas, terminaron trepados a los árboles, usando las escopetas como pipas para fumar y alimentando a las aves. También se dice que se utilizó la misma sustancia para enloquecer un pequeño pueblo francés.
3)Control Mental El tercer grupo de tecnologías se enfocan en el control mental. Básicamente, todo aquello que pueda hacer de nuestro libre albedrío algo del pasado. El objetivo de máxima es conseguir un tipo de arma (de alguna manera hay que llamarla) que, por ejemplo, haga que la gente se comporte de formas que no son las normales. Una de las ideas en danza es la de lograr que nuestros ciudadanos nos crean cada vez que decimos algo, o que el enemigo sienta un miedo profundo que le impida operar con eficacia. Si, también creemos que esta gente mira mucha TV, pero seguramente algo de todo esto va a funcionar.
El proyecto HAARP es un proyecto que según la teoría de las conspiraciones, se está desarrollando en Alaska, un arma que nos crearía una visión holográfica de la realidad. Esa arma, tomaría la información que nosotros cargamos en facebook,u otras redes sociales para crearnos una realidad como la que a nosotros nos gustaría vivir, de ahí que seríamos fácilmente engañables y exterminables.
4)Cerebro-máquina Y el cuarto apartado se refiere a las tecnologías que permitan conectar nuestros queridos cerebros (o los de sus tropas, en realidad) a las máquinas. Ya que, como sabemos, el ejército va incorporando gradualmente mayores porcentajes de robots entre sus filas, no estaría nada mal poder hacer que los encargados de dirigirlos puedan hacerlo directamente con sus cerebros.
¿Alguien se acuerda del cerebro de las tortugas ninjas?
Estas son algunas de las muchas ideas que están dando vuelta por los escritorios y laboratorios de estos científicos que parecen bastante tomadas de los pelos. Sin embargo, y en parte gracias al abultado presupuesto que manejan, es casi seguro que alguna llegue a transformarse, en algunos años, en una realidad. Se nos plantea un futuro, como mínimo, inquietante.
http://www.guardian.co.uk/science/2008/aug/13/military.neuroscience
'Brain Cap' Technology Turns Thought Into Motion; Mind-Machine Interface Could Lead to New Life-Changing Technologies for Millions of People
"Brain cap" technology being developed at the University of Maryland allows users to turn their thoughts into motion. Associate Professor of Kinesiology José 'Pepe' L. Contreras-Vidal and his team have created a non-invasive, sensor-lined cap with neural interface software that soon could be used to control computers, robotic prosthetic limbs, motorized wheelchairs and even digital avatars.
http://www.sciencedaily.com/releases/2011/07/110727121555.htm
http://www.sciencedaily.com/releases/2011/07/110727121555.htm
Political Negotiations Also Shaped By Human Psychology
We all know congressional negotiators are trying to balance party and ideology, principle and pragmatism. But negotiators are people, too, and psychology has some useful things to say about the ongoing debt-ceiling standoff. Here are some key ideas to keep in mind.
http://www.npr.org/blogs/thetwo-way/2011/07/29/138802290/political-negotiations-also-shaped-by-human-psychology?ft=1&f
Why Diets Don't Work: Starved Brain Cells Eat Themselves, Study Finds
A report in the August issue of the Cell Press journal Cell Metabolism might help to explain why it's so frustratingly difficult to stick to a diet. When we don't eat, hunger-inducing neurons in the brain start eating bits of themselves. That act of self-cannibalism turns up a hunger signal to prompt eating.
http://www.sciencedaily.com/releases/2011/08/110802125546.htm
http://www.sciencedaily.com/releases/2011/08/110802125546.htm
El cerebro está atento a cada una de nuestras emociones
Se dice comúnmente que llorar de tristeza o de alegría, que tener esperanza o piedad, que nos irrite una injusticia y que luchemos para vencerla, nos hace más humanos. En realidad, una expresión más precisa debería evitar el aumentativo y decir que las emociones son las que nos hacen, sin más, seres humanos. Y no sólo las emociones positivas, sino también aquellas que nos convierten ocasionalmente en personas impiadosas o pesimistas.
La emoción es un proceso influido por nuestro pasado evolutivo y personal que desata un conjunto de cambios fisiológicos y comportamentales claves para nuestra supervivencia. Tanto, que influye en procesos cognitivos trascendentes como la memoria y la toma de decisiones. Este comportamiento emocional involucra al comportamiento en sí, y también cambios corporales internos (viscerales y sistema nervioso autonómo), el tono de la voz y los gestos.
Fue Darwin en 1872 en La expresión de las emociones en humanos y animales quien postuló que existen emociones “básicas” (como la tristeza, la alegría, la ira, la sorpresa, el disgusto o el miedo) en los animales que son homólogas a las humanas y están presentes en las diferentes especies y culturas. Mucho más acá en el tiempo, el psicólogo norteamericano Paul Ekman mostró que estas emociones básicas están asociadas con expresiones faciales distintivas y que estas señales son comunes en las diferentes culturas del mundo. También postuló que cada emoción básica debería estar asociada a un circuito cerebral particular.
Dos emociones que han recibido atención son el miedo y el disgusto. La tecnología de imágenes cerebrales y el trabajo con pacientes que han sufrido lesiones cerebrales han mostrado que una estructura cerebral llamada “amígdala” juega un rol significativo en el miedo y en la memoria de eventos emocionales. También existe evidencia de que una región cerebral conocida como la “ínsula” subyace al reconocimiento de señales humanas de disgusto.
En un trabajo que publicamos en la revista especializada Nature Neuroscience hace unos años estudiamos con Andy Calder de la Universidad de Cambridge en Inglaterra un paciente, NK, que tenía una lesión en la región insular y mostraba una alta imposibilidad selectiva para el reconocimiento del disgusto. Sobre las bases de estos y otros hallazgos se cree que el cerebro humano contiene sistemas neurales parcialmente separados pero interconectados que codifican emociones específicas. Además del miedo y del disgusto, hay evidencia de que otras emociones como la ira tendrían un circuito neural distintivo. La idea de que estos sistemas están interconectados y se comunican unos con otros es esencial, porque muchas de las situaciones emotivas con las que tropezamos en la vida diaria contienen una combinación de emociones.
También existen las emociones complejas (culpa, orgullo, vergüenza) que emergen entre los 18 y 24 meses de vida y su expresión varía según cultura y contexto. Las pasiones, como llamaban a las emociones los griegos, son las que nos relacionan con nuestra evolución como especie y, a la vez, nos hacen únicos en el reino animal. Parece, entonces, una ironía cuando aún se dice con suficiencia que llorar no es cosa de hombres.
El cerebro también canturrea sus melodías preferidas
La música es llave de la memoria, la emoción y la inteligencia.
Nos habrá pasado algún día, seguramente, escuchar en la radio una vieja canción de nuestra infancia y que eso nos retrotraiga a los albores de nuestra vida como una película que empieza a pasar de nuevo por la mente. O pasear por algún lugar remoto del extranjero y que sea cierta música la que despierte la melancolía por el lugar de donde somos .
¿Qué cualidad tiene entonces la música que parece actuar, en muchos casos, como llave que moviliza mecanismos como la memoria, la emoción, la inteligencia humana ? Aunque los neurocientíficos recién están empezando a descubrir cómo nuestros cerebros procesan la música, existe evidencia de activación compleja y generalizada en muchas áreas del cerebro cuando uno toca, escucha o se imagina mentalmente música.
El cerebro es modificado por la música y la exposición a la música podría aumentar el funcionamiento emocional y cognitivo.
Un estudio reciente publicado en la prestigiosa revista Nature Neuroscience demostró, por primera vez, que escuchar música libera la misma sustancia química en el cerebro que la comida, el sexo e, incluso, las drogas : la dopamina . Esta molécula está muy fuertemente vinculada a los circuitos de recompensa en nuestro sistema nervioso.
Para evaluar el mecanismo biológico detrás de una experiencia musical agradable, el equipo utilizó neuroimágenes funcionales (que nos permiten ir visualizando, en tiempo real, qué áreas del cerebro se activan frente a distintos estímulos) y captar cambios en la temperatura corporal, la conductividad de la piel, la frecuencia cardíaca y la respiración, que los participantes sentían en respuesta a sus canciones favoritas.
Los investigadores encontraron que la dopamina se libera en dos áreas del cerebro: en primer lugar, en anticipación a un pico musical, en el núcleo caudado , clave en el aprendizaje y la memoria; a continuación, durante la experiencia máxima, en el núcleo accumbens , un sitio clave de las vías de recompensa y el placer. Nuestra experiencia con la música también puede variar los patrones de actividad en nuestro cerebro.
Otra cuestión relevante es pensar los mecanismos que se activan para la ejecución musical . En músicos expertos existe una mayor densidad de conexiones entre distintas estructuras del cerebro, a fin de afianzar la coordinación, por ejemplo, de las secuencias motoras necesarias para tocar un instrumento. Esta capacidad del cerebro de ir reorganizándose para alimentar la alta demanda de actividad musical es crucial también porque permite pensar en la utilización de la música para la rehabilitación .
De hecho, investigadores de la Universidad de Harvard han entrenado con ciertos tonos musicales a pacientes que habían sufrido un accidente cerebrovascular, que había afectado su capacidad para comunicarse de manera oral. Observaron que, tras un intenso entrenamiento, se habían remodelado las áreas “sanas” para compensar la falta de funcionamiento de las áreas afectadas por el accidente.
Estas reflexiones nos permiten reconsiderar la simple y reiterada definición que da cuenta de que la música es un arte que combina mucho más que los sonidos.
Via: Intramed
La emoción es un proceso influido por nuestro pasado evolutivo y personal que desata un conjunto de cambios fisiológicos y comportamentales claves para nuestra supervivencia. Tanto, que influye en procesos cognitivos trascendentes como la memoria y la toma de decisiones. Este comportamiento emocional involucra al comportamiento en sí, y también cambios corporales internos (viscerales y sistema nervioso autonómo), el tono de la voz y los gestos.
Fue Darwin en 1872 en La expresión de las emociones en humanos y animales quien postuló que existen emociones “básicas” (como la tristeza, la alegría, la ira, la sorpresa, el disgusto o el miedo) en los animales que son homólogas a las humanas y están presentes en las diferentes especies y culturas. Mucho más acá en el tiempo, el psicólogo norteamericano Paul Ekman mostró que estas emociones básicas están asociadas con expresiones faciales distintivas y que estas señales son comunes en las diferentes culturas del mundo. También postuló que cada emoción básica debería estar asociada a un circuito cerebral particular.
Dos emociones que han recibido atención son el miedo y el disgusto. La tecnología de imágenes cerebrales y el trabajo con pacientes que han sufrido lesiones cerebrales han mostrado que una estructura cerebral llamada “amígdala” juega un rol significativo en el miedo y en la memoria de eventos emocionales. También existe evidencia de que una región cerebral conocida como la “ínsula” subyace al reconocimiento de señales humanas de disgusto.
En un trabajo que publicamos en la revista especializada Nature Neuroscience hace unos años estudiamos con Andy Calder de la Universidad de Cambridge en Inglaterra un paciente, NK, que tenía una lesión en la región insular y mostraba una alta imposibilidad selectiva para el reconocimiento del disgusto. Sobre las bases de estos y otros hallazgos se cree que el cerebro humano contiene sistemas neurales parcialmente separados pero interconectados que codifican emociones específicas. Además del miedo y del disgusto, hay evidencia de que otras emociones como la ira tendrían un circuito neural distintivo. La idea de que estos sistemas están interconectados y se comunican unos con otros es esencial, porque muchas de las situaciones emotivas con las que tropezamos en la vida diaria contienen una combinación de emociones.
También existen las emociones complejas (culpa, orgullo, vergüenza) que emergen entre los 18 y 24 meses de vida y su expresión varía según cultura y contexto. Las pasiones, como llamaban a las emociones los griegos, son las que nos relacionan con nuestra evolución como especie y, a la vez, nos hacen únicos en el reino animal. Parece, entonces, una ironía cuando aún se dice con suficiencia que llorar no es cosa de hombres.
El cerebro también canturrea sus melodías preferidas
La música es llave de la memoria, la emoción y la inteligencia.
Nos habrá pasado algún día, seguramente, escuchar en la radio una vieja canción de nuestra infancia y que eso nos retrotraiga a los albores de nuestra vida como una película que empieza a pasar de nuevo por la mente. O pasear por algún lugar remoto del extranjero y que sea cierta música la que despierte la melancolía por el lugar de donde somos .
¿Qué cualidad tiene entonces la música que parece actuar, en muchos casos, como llave que moviliza mecanismos como la memoria, la emoción, la inteligencia humana ? Aunque los neurocientíficos recién están empezando a descubrir cómo nuestros cerebros procesan la música, existe evidencia de activación compleja y generalizada en muchas áreas del cerebro cuando uno toca, escucha o se imagina mentalmente música.
El cerebro es modificado por la música y la exposición a la música podría aumentar el funcionamiento emocional y cognitivo.
Un estudio reciente publicado en la prestigiosa revista Nature Neuroscience demostró, por primera vez, que escuchar música libera la misma sustancia química en el cerebro que la comida, el sexo e, incluso, las drogas : la dopamina . Esta molécula está muy fuertemente vinculada a los circuitos de recompensa en nuestro sistema nervioso.
Para evaluar el mecanismo biológico detrás de una experiencia musical agradable, el equipo utilizó neuroimágenes funcionales (que nos permiten ir visualizando, en tiempo real, qué áreas del cerebro se activan frente a distintos estímulos) y captar cambios en la temperatura corporal, la conductividad de la piel, la frecuencia cardíaca y la respiración, que los participantes sentían en respuesta a sus canciones favoritas.
Los investigadores encontraron que la dopamina se libera en dos áreas del cerebro: en primer lugar, en anticipación a un pico musical, en el núcleo caudado , clave en el aprendizaje y la memoria; a continuación, durante la experiencia máxima, en el núcleo accumbens , un sitio clave de las vías de recompensa y el placer. Nuestra experiencia con la música también puede variar los patrones de actividad en nuestro cerebro.
Otra cuestión relevante es pensar los mecanismos que se activan para la ejecución musical . En músicos expertos existe una mayor densidad de conexiones entre distintas estructuras del cerebro, a fin de afianzar la coordinación, por ejemplo, de las secuencias motoras necesarias para tocar un instrumento. Esta capacidad del cerebro de ir reorganizándose para alimentar la alta demanda de actividad musical es crucial también porque permite pensar en la utilización de la música para la rehabilitación .
De hecho, investigadores de la Universidad de Harvard han entrenado con ciertos tonos musicales a pacientes que habían sufrido un accidente cerebrovascular, que había afectado su capacidad para comunicarse de manera oral. Observaron que, tras un intenso entrenamiento, se habían remodelado las áreas “sanas” para compensar la falta de funcionamiento de las áreas afectadas por el accidente.
Estas reflexiones nos permiten reconsiderar la simple y reiterada definición que da cuenta de que la música es un arte que combina mucho más que los sonidos.
Via: Intramed
martes, 2 de agosto de 2011
La meditación potencia la salud cerebral
4 décadas, es el tiempo que la ciencia viene dedicándole exhaustivamente al estudio e investigación sobre los efectos psico-físicos de la meditación. Todavía hoy, siguen apareciendo profusas literaturas que nos cuentan sobre el gran abanico de ventajas que la práctica de la meditación abre en el meditador.
Uno de los últimos descubrimientos científicos al respecto es, a saber, que la meditación mejora la calidad de las células. Técnicamente, aumenta la actividad de la telomerasa . Célula esencial para el mantenimiento del organismo.
En dicho descubrimiento se comprobó que la meditación promueve cambios psicológicos positivos; y que la gente que medita muestra los mayores progresos en diversas mediciones psicológicas. Asimismo, presentan los más altos niveles de telomerasa. Y en su gran mayoría afirman ser felices.
La conclusión a la que llegan los científicos es que la meditación aumenta el bienestar psicológico y, en consecuencia, puede incrementar la actividad de la telomerasa en las células inmunes, lo que aumenta la longevidad celular. En definitiva: el bienestar mental propiciado por la meditación puede tener un profundo efecto en los aspectos más fundamentales de la fisiología humana.
A modo de información, comentamos que la investigación se enmarcó en un proyecto de la UCDavis denominado Proyecto Shamatha, en el que se están analizando los efectos de la meditación intensiva en cuerpo y mente.
Estas investigaciones, pioneras en ésta área, dan fundamentos empíricos a los psicólogos que prescribían meditación a sujetos internados en centros de rehabilitación de drogo dependencias y/o en centros de atención a pacientes con HIV. Sin un fundamento científico que los avale, los psicoterapeutas afirmaban que los pacientes meditadores mejoraban notoriamente. No sólo en su vertiente psico-afectiva, además, físicamente. Retrasando el avance el HIV o mejorando la decrepitud celular propia del abuso de sustancias.
Por estos, y otros tantos fundamentos científicos más (que próximamente compartiremos con ustedes) es que se afirma que la práctica de mindfulness es hasta ahora una de las pocas (y más económicas) claves para alcanzar y mantener una vida plena, rebosante de salud y alegría
Uno de los últimos descubrimientos científicos al respecto es, a saber, que la meditación mejora la calidad de las células. Técnicamente, aumenta la actividad de la telomerasa . Célula esencial para el mantenimiento del organismo.
En dicho descubrimiento se comprobó que la meditación promueve cambios psicológicos positivos; y que la gente que medita muestra los mayores progresos en diversas mediciones psicológicas. Asimismo, presentan los más altos niveles de telomerasa. Y en su gran mayoría afirman ser felices.
La conclusión a la que llegan los científicos es que la meditación aumenta el bienestar psicológico y, en consecuencia, puede incrementar la actividad de la telomerasa en las células inmunes, lo que aumenta la longevidad celular. En definitiva: el bienestar mental propiciado por la meditación puede tener un profundo efecto en los aspectos más fundamentales de la fisiología humana.
A modo de información, comentamos que la investigación se enmarcó en un proyecto de la UCDavis denominado Proyecto Shamatha, en el que se están analizando los efectos de la meditación intensiva en cuerpo y mente.
Estas investigaciones, pioneras en ésta área, dan fundamentos empíricos a los psicólogos que prescribían meditación a sujetos internados en centros de rehabilitación de drogo dependencias y/o en centros de atención a pacientes con HIV. Sin un fundamento científico que los avale, los psicoterapeutas afirmaban que los pacientes meditadores mejoraban notoriamente. No sólo en su vertiente psico-afectiva, además, físicamente. Retrasando el avance el HIV o mejorando la decrepitud celular propia del abuso de sustancias.
Por estos, y otros tantos fundamentos científicos más (que próximamente compartiremos con ustedes) es que se afirma que la práctica de mindfulness es hasta ahora una de las pocas (y más económicas) claves para alcanzar y mantener una vida plena, rebosante de salud y alegría
New study suggests virtual possessions are as important as material ones to teenagers
What does it really mean to own or possess something ? Something that we can touch, physically locate or ‘legally’ add to our list of things that belong exclusively to us ?
A new study carried out by the Carnegie Mellon University’s (CMU) Human-Computer Interaction Institute (HCII) and School of Design (1) suggests that virtually accessible immaterial internet artifacts like Facebook updates, digital images, email threads may be just as real as material ‘stuff’ when it came to things like person memorabilia that generations of people have lovingly preserved in their attic. As a distinct example of this phenomenon, the young participants of this CMU study reported immediately uploading photographs of an event they have been to, geo-tagged, commented upon and annotated by other friends too, which in turn made the digital photograph comparatively more valuable than if it were put in a picture frame.
In an increasingly online interaction-based landscape, the Internet is now generating newer virtual artifacts than ever before – gaming avatars, foursquare badges, rankings, in addition to personal digital collections of music, e books and videos. And interestingly, the fact that these artifacts are online create more of a sense of belonging by virtue of its placelessness : they are always there, along with their ‘owner’ accessible by the touch of a button wirelessly.
But what does imply in terms of cultural psychology ? Perhaps that a sense of belonging does not necessarily need a ‘physical’ presence. Maybe this explains why we can hold cultural beliefs , institutions we’re not physically associated with as part of our psyche. And also the fact that humans can develop quite strong bonds with imaginary figureheads, ideologies and objects of veneration.
There is nothing inherently irrational about it – its just the way we are wired.
References :
Carnegie Mellon University. “Virtual possessions have powerful hold on teenagers, researchers say.” ScienceDaily, 10 May 2011. Web. 11 May 2011.
A new study carried out by the Carnegie Mellon University’s (CMU) Human-Computer Interaction Institute (HCII) and School of Design (1) suggests that virtually accessible immaterial internet artifacts like Facebook updates, digital images, email threads may be just as real as material ‘stuff’ when it came to things like person memorabilia that generations of people have lovingly preserved in their attic. As a distinct example of this phenomenon, the young participants of this CMU study reported immediately uploading photographs of an event they have been to, geo-tagged, commented upon and annotated by other friends too, which in turn made the digital photograph comparatively more valuable than if it were put in a picture frame.
But what does imply in terms of cultural psychology ? Perhaps that a sense of belonging does not necessarily need a ‘physical’ presence. Maybe this explains why we can hold cultural beliefs , institutions we’re not physically associated with as part of our psyche. And also the fact that humans can develop quite strong bonds with imaginary figureheads, ideologies and objects of veneration.
There is nothing inherently irrational about it – its just the way we are wired.
References :
Carnegie Mellon University. “Virtual possessions have powerful hold on teenagers, researchers say.” ScienceDaily, 10 May 2011. Web. 11 May 2011.
New Brain Imaging Research Reveals Why Autistic Individuals Confuse Pronouns
Nueva investigación de imágenes cerebrales revela por qué los individuos con autismo confunden los pronombres
Autism is a mysterious developmental disease because it often leaves complex abilities intact while impairing seemingly elementary ones. For example, it is well documented that autistic children often have difficulty correctly using pronouns, sometimes referring to themselves as "you" instead of "I."
A new brain imaging study published in the journal Brain by scientists at Carnegie Mellon University provides an explanation as to why autistic individuals' use of the wrong pronoun is more than simply a word choice problem. Marcel Just, Akiki Mizuno and their collaborators at CMU's Center for Cognitive Brain Imaging (CCBI) found that errors in choosing a self-referring pronoun reflect a disordered neural representation of the self, a function processed by at least two brain areas -- one frontal and one posterior.
"The psychology of self -- the thought of one's own identity -- is especially important in social interaction, a facet of behavior that is usually disrupted in autism," said Just, a leading cognitive neuroscientist and the D.O. Hebb Professor of Psychology at CMU who directs the CCBI. "Most children don't need to receive any instruction in which pronoun to use. It just comes naturally, unless a child has autism."
For the study, the research team used functional magnetic resonance imaging (fMRI) to compare the brain activation pattern and the synchronization of activation across brain areas in young adults with high-functioning autism with control participants during a language task that required rapid pronoun comprehension.
The results revealed a significantly diminished synchronization in autism between a frontal area (the right anterior insula) and a posterior area (precuneus) during pronoun use in the autism group. The participants with autism also were slower and less accurate in their behavioral processing of the pronouns. In particular, the synchronization was lower in autistic participants' brains between the right anterior insula and precuneus when answering a question that contained the pronoun "you," querying something about the participant's view.
"Shifting from one pronoun to another, depending on who the speaker is, constitutes a challenge not just for children with autism but also for adults with high-functioning autism, particularly when referring to one's self," Just said. "The functional collaboration of two brain areas may play a critical role for perspective shifting by supporting an attention shift between oneself and others.
"Pronoun reversals also characterize an atypical understanding of the social world in autism. The ability to flexibly shift viewpoints is vital to social communication, so the autistic impairment affects not just language but social communication," Just added.
Autism was documented for the first time in 1943, in a landmark article by Dr. Leo Kanner of Johns Hopkins University. In that first article, Kanner noted the puzzling misuse of pronouns by children with the disorder. "When he [the child] wanted his mother to pull his shoe off, he said: 'Pull off your shoe.'" Kanner added that, "Personal pronouns are repeated [by the child with autism] just as heard, with no change to suit the altered situation." Because his mother referred to him as "you," so did the child.
Just's previous brain imaging research in autism has shown that other facets of thinking that are disrupted in autism, such as social difficulties and language impairments, also may be attributed to a reduced communication bandwidth between the frontal and posterior parts of the brain. He refers to this as the "Theory of Frontal-Posterior Underconnectivity." In each of these types of thinking, the processing is done by a set of different brain regions that includes key frontal regions, and the lower frontal-posterior bandwidth limits how well the frontal regions can contribute to the brain's networked computations.
The brain's communication network is its white matter, the 45 percent of the brain that consists of myelinated (insulated) axons that carry information between brain regions. An emerging view is that the white matter is compromised in autism, specifically in the frontal-posterior tracts. In a groundbreaking study published in 2009, Just and his colleagues showed for the first time that compromised white matter in children with reading difficulties could be repaired with extensive behavioral therapy. Their imaging study showed that the brain locations that had been abnormal prior to the remedial training improved to normal levels after the training, and the reading performance in individual children improved by an amount that corresponded to the amount of white matter change. Ongoing research at the CCBI is assessing the white matter in detail, measuring its integrity and topology, trying to pinpoint the difference in the autistic brain's networks.
"This new understanding of what causes pronoun confusion in autism helps make sense of the larger problems of autism as well as the idiosyncrasies," Just said. "Moreover, it points to new types of therapies that may help rehab the white matter in autism."
In addition to Just and Mizuno, a psychology doctoral candidate and first author of the study, the research team included CMU's Yanni Liu, a postdoctoral associate, and Timothy A. Keller, a senior research psychologist; Duquesne University's Diane L. Williams, an assistant professor of speech-language pathology; and the University of Pittsburgh School of Medicine's Nancy J. Minshew, a professor of psychiatry and neurology.
This research was funded by the National Institute of Child Health and Human Development and the Autism Speaks Foundation.
Carnegie Mellon University. "New brain imaging research reveals why autistic individuals confuse pronouns." ScienceDaily, 1 Aug. 2011. Web. 2 Aug. 2011.
Autism is a mysterious developmental disease because it often leaves complex abilities intact while impairing seemingly elementary ones. For example, it is well documented that autistic children often have difficulty correctly using pronouns, sometimes referring to themselves as "you" instead of "I."
A new brain imaging study published in the journal Brain by scientists at Carnegie Mellon University provides an explanation as to why autistic individuals' use of the wrong pronoun is more than simply a word choice problem. Marcel Just, Akiki Mizuno and their collaborators at CMU's Center for Cognitive Brain Imaging (CCBI) found that errors in choosing a self-referring pronoun reflect a disordered neural representation of the self, a function processed by at least two brain areas -- one frontal and one posterior.
"The psychology of self -- the thought of one's own identity -- is especially important in social interaction, a facet of behavior that is usually disrupted in autism," said Just, a leading cognitive neuroscientist and the D.O. Hebb Professor of Psychology at CMU who directs the CCBI. "Most children don't need to receive any instruction in which pronoun to use. It just comes naturally, unless a child has autism."
For the study, the research team used functional magnetic resonance imaging (fMRI) to compare the brain activation pattern and the synchronization of activation across brain areas in young adults with high-functioning autism with control participants during a language task that required rapid pronoun comprehension.
The results revealed a significantly diminished synchronization in autism between a frontal area (the right anterior insula) and a posterior area (precuneus) during pronoun use in the autism group. The participants with autism also were slower and less accurate in their behavioral processing of the pronouns. In particular, the synchronization was lower in autistic participants' brains between the right anterior insula and precuneus when answering a question that contained the pronoun "you," querying something about the participant's view.
"Shifting from one pronoun to another, depending on who the speaker is, constitutes a challenge not just for children with autism but also for adults with high-functioning autism, particularly when referring to one's self," Just said. "The functional collaboration of two brain areas may play a critical role for perspective shifting by supporting an attention shift between oneself and others.
"Pronoun reversals also characterize an atypical understanding of the social world in autism. The ability to flexibly shift viewpoints is vital to social communication, so the autistic impairment affects not just language but social communication," Just added.
Autism was documented for the first time in 1943, in a landmark article by Dr. Leo Kanner of Johns Hopkins University. In that first article, Kanner noted the puzzling misuse of pronouns by children with the disorder. "When he [the child] wanted his mother to pull his shoe off, he said: 'Pull off your shoe.'" Kanner added that, "Personal pronouns are repeated [by the child with autism] just as heard, with no change to suit the altered situation." Because his mother referred to him as "you," so did the child.
Just's previous brain imaging research in autism has shown that other facets of thinking that are disrupted in autism, such as social difficulties and language impairments, also may be attributed to a reduced communication bandwidth between the frontal and posterior parts of the brain. He refers to this as the "Theory of Frontal-Posterior Underconnectivity." In each of these types of thinking, the processing is done by a set of different brain regions that includes key frontal regions, and the lower frontal-posterior bandwidth limits how well the frontal regions can contribute to the brain's networked computations.
The brain's communication network is its white matter, the 45 percent of the brain that consists of myelinated (insulated) axons that carry information between brain regions. An emerging view is that the white matter is compromised in autism, specifically in the frontal-posterior tracts. In a groundbreaking study published in 2009, Just and his colleagues showed for the first time that compromised white matter in children with reading difficulties could be repaired with extensive behavioral therapy. Their imaging study showed that the brain locations that had been abnormal prior to the remedial training improved to normal levels after the training, and the reading performance in individual children improved by an amount that corresponded to the amount of white matter change. Ongoing research at the CCBI is assessing the white matter in detail, measuring its integrity and topology, trying to pinpoint the difference in the autistic brain's networks.
"This new understanding of what causes pronoun confusion in autism helps make sense of the larger problems of autism as well as the idiosyncrasies," Just said. "Moreover, it points to new types of therapies that may help rehab the white matter in autism."
In addition to Just and Mizuno, a psychology doctoral candidate and first author of the study, the research team included CMU's Yanni Liu, a postdoctoral associate, and Timothy A. Keller, a senior research psychologist; Duquesne University's Diane L. Williams, an assistant professor of speech-language pathology; and the University of Pittsburgh School of Medicine's Nancy J. Minshew, a professor of psychiatry and neurology.
This research was funded by the National Institute of Child Health and Human Development and the Autism Speaks Foundation.
Carnegie Mellon University. "New brain imaging research reveals why autistic individuals confuse pronouns." ScienceDaily, 1 Aug. 2011. Web. 2 Aug. 2011.
High Blood Pressure, Diabetes, Smoking and Obesity in Middle Age May Shrink Brain, Damage Thinking
A new study suggests smoking, high blood pressure, diabetes and being overweight in middle age may cause brain shrinkage and lead to cognitive problems up to a decade later. The study is published in the August 2, 2011, print issue of Neurology®, the medical journal of the American Academy of Neurology.
"These factors appeared to cause the brain to lose volume, to develop lesions secondary to presumed vascular injury, and also appeared to affect its ability to plan and make decisions as quickly as 10 years later. A different pattern of association was observed for each of the factors," said study author Charles DeCarli, MD, with the University of California at Davis in Sacramento and a Fellow of the American Academy of Neurology. "Our findings provide evidence that identifying these risk factors early in people of middle age could be useful in screening people for at-risk dementia and encouraging people to make changes to their lifestyle before it's too late."
The study involved 1,352 people without dementia from the Framingham Offspring Study with an average age of 54.
Participants had body mass and waist circumference measures taken and were given blood pressure, cholesterol and diabetes tests. They also underwent brain MRI scans over the span of a decade, the first starting about seven years after the initial risk factor exam. Participants with stroke and dementia at baseline were excluded, and between the first and last MRI exams, 19 people had a stroke and two developed dementia.
The study found that people with high blood pressure developed white matter hyperintensities, or small areas of vascular brain damage, at a faster rate than those with normal blood pressure readings and had a more rapid worsening of scores on tests of executive function, or planning and decision making, corresponding to five and eight years of chronological aging respectively.
People with diabetes in middle age lost brain volume in the hippocampus (measured indirectly using a surrogate marker) at a faster rate than those without diabetes. Smokers lost brain volume overall and in the hippocampus at a faster rate than nonsmokers and were also more likely to have a rapid increase in white matter hyperintensities.
People who were obese at middle age were more likely to be in the top 25 percent of those with the faster rate of decline in scores on tests of executive function, DeCarli said. People with a high waist-to-hip ratio were more likely to be in the top 25 percent of those with faster decrease in their brain volume.
The study was supported by the National Heart, Lung, and Blood Institute, the National Institute of Neurological Disorders and Stroke and the National Institute on Aging.
American Academy of Neurology (2011, August 1). High blood pressure, diabetes, smoking and obesity in middle age may shrink brain, damage thinking. ScienceDaily. Retrieved August 2, 2011, from http://www.sciencedaily.com /releases/2011/08/110801161407.htm
"These factors appeared to cause the brain to lose volume, to develop lesions secondary to presumed vascular injury, and also appeared to affect its ability to plan and make decisions as quickly as 10 years later. A different pattern of association was observed for each of the factors," said study author Charles DeCarli, MD, with the University of California at Davis in Sacramento and a Fellow of the American Academy of Neurology. "Our findings provide evidence that identifying these risk factors early in people of middle age could be useful in screening people for at-risk dementia and encouraging people to make changes to their lifestyle before it's too late."
The study involved 1,352 people without dementia from the Framingham Offspring Study with an average age of 54.
Participants had body mass and waist circumference measures taken and were given blood pressure, cholesterol and diabetes tests. They also underwent brain MRI scans over the span of a decade, the first starting about seven years after the initial risk factor exam. Participants with stroke and dementia at baseline were excluded, and between the first and last MRI exams, 19 people had a stroke and two developed dementia.
The study found that people with high blood pressure developed white matter hyperintensities, or small areas of vascular brain damage, at a faster rate than those with normal blood pressure readings and had a more rapid worsening of scores on tests of executive function, or planning and decision making, corresponding to five and eight years of chronological aging respectively.
People with diabetes in middle age lost brain volume in the hippocampus (measured indirectly using a surrogate marker) at a faster rate than those without diabetes. Smokers lost brain volume overall and in the hippocampus at a faster rate than nonsmokers and were also more likely to have a rapid increase in white matter hyperintensities.
People who were obese at middle age were more likely to be in the top 25 percent of those with the faster rate of decline in scores on tests of executive function, DeCarli said. People with a high waist-to-hip ratio were more likely to be in the top 25 percent of those with faster decrease in their brain volume.
The study was supported by the National Heart, Lung, and Blood Institute, the National Institute of Neurological Disorders and Stroke and the National Institute on Aging.
American Academy of Neurology (2011, August 1). High blood pressure, diabetes, smoking and obesity in middle age may shrink brain, damage thinking. ScienceDaily. Retrieved August 2, 2011, from http://www.sciencedaily.com /releases/2011/08/110801161407.htm
El acoplamiento funcional entre las zonas central y parietal está vinculado directamente con la función de la memoria de preparación
Mediante el bloqueo de una proteína, buscan ayudar a los adictos al tabaco a dejar esa droga
http://www.sciencedaily.com/releases/2011/07/110726190111.htm
Eliminando una proteína ubicada en el área del cerebro responsable de "las recompensas", los científicos pudieron reducir la ansiedad y los efectos gratificantes de la nicotina. Este experimento se realizó en un nuevo estudio con 27 animales. Los resultados del mismo, se publicaron en el "Jornal of Neuroscience".
Estos hallazgos podrían ayudar a los investigadores a comprender mejor cómo funciona la nicotina en el cerebro y poder ayudar a las personas adictas al tabaco a dejar esta droga.
Eliminando una proteína ubicada en el área del cerebro responsable de "las recompensas", los científicos pudieron reducir la ansiedad y los efectos gratificantes de la nicotina. Este experimento se realizó en un nuevo estudio con 27 animales. Los resultados del mismo, se publicaron en el "Jornal of Neuroscience".
Estos hallazgos podrían ayudar a los investigadores a comprender mejor cómo funciona la nicotina en el cerebro y poder ayudar a las personas adictas al tabaco a dejar esta droga.
lunes, 1 de agosto de 2011
Bizarre cartoon of evolution / Extraño video de la evolución!
http://www.youtube.com/watch?v=tWMfDUMDaVQ&feature=player_embedded#at=39
In this video you´ll see some bizarre cartoon of evolution.
Enjoy it!
---------------
En éste video verán, una extraña animación sobre la evolución!
Espero que lo disfruten!
In this video you´ll see some bizarre cartoon of evolution.
Enjoy it!
---------------
En éste video verán, una extraña animación sobre la evolución!
Espero que lo disfruten!
Does vegetarianism make you dumber?
http://www.psychologytoday.com/blog/you-illuminated/201102/does-vegetarianism-make-you-dumber
This past year, David Benton, a psychology professor in Wales who studies the relationship between diet and behavior, examined the memory of vegetarians and omnivores before and after taking either placebo or creatine supplements. Prior to taking pills, vegetarians and omnivores performed similarly on a memory test. Both the vegetarians and omnivores were divided into two groups, one receiving placebo, the other creatine. After a week, the omnivores scored the same whether or not they had taken placebo or creatine, and the vegetarians who had taken placebo still matched the omnivores' performance. However, the vegetarians who took creatine leapt ahead. Initially, all groups were roughly even, but the creatine-enriched vegetarians now had better memories.
This past year, David Benton, a psychology professor in Wales who studies the relationship between diet and behavior, examined the memory of vegetarians and omnivores before and after taking either placebo or creatine supplements. Prior to taking pills, vegetarians and omnivores performed similarly on a memory test. Both the vegetarians and omnivores were divided into two groups, one receiving placebo, the other creatine. After a week, the omnivores scored the same whether or not they had taken placebo or creatine, and the vegetarians who had taken placebo still matched the omnivores' performance. However, the vegetarians who took creatine leapt ahead. Initially, all groups were roughly even, but the creatine-enriched vegetarians now had better memories.
Paisajes del Cerebro
El siguiente, es una representación artística que amalgama una peculiar forma de expresión artística y el mundo de las neuronas:
http://www.elmundo.es/albumes/2011/05/13/paisajes_cerebro/index.html
http://www.elmundo.es/albumes/2011/05/13/paisajes_cerebro/index.html
Restoring happines in people with depression
Researchers from UC Riverside and Duke University propose a new and less expensive approach to treating depression.
Practicing positive activities may serve as an effective, low-cost treatment for people suffering from depression, according to researchers at the University of California, Riverside and Duke University Medical Center.
In “Delivering Happiness: Translating Positive Psychology Intervention Research for Treating Major and Minor Depressive Disorders,” a paper that appears in the August 2011 issue of the Journal of Alternative and Complementary Medicine, the team of UCR and Duke psychology, neuroscience and psychopharmacology researchers proposed a new approach for treating depression – Positive Activity Interventions (PAI).
PAIs are intentional activities such as performing acts of kindness, practicing optimism, and counting one’s blessing gleaned from decades of research into how happy and unhappy people are different. This new approach has the potential to benefit depressed individuals who don’t respond to pharmacotherapy or are not able or willing to obtain treatment, is less expensive to administer, is relatively less time-consuming and promises to yield rapid improvement of mood symptoms, holds little to no stigma, and carries no side effects.
More than 16 million U.S. adults – about 8 percent of the population – suffer from either major or chronic depression. About 70 percent of reported cases either do not receive the recommended level of treatment or do not get treated at all, according to the National Institute of Mental Health. Globally, the World Health Organization estimates that depression affects more than 100 million people.
Although antidepressants can be lifesaving for some individuals, initial drug therapy produces full benefits in only 30 percent to 40 percent of patients. Even after trying two to four different drugs, one-third of people will remain depressed.
The research team – Kristin Layous and Joseph Chancellor, graduate students at UC Riverside; Sonja Lyubomirsky, professor of psychology and director of the Positive Psychology Laboratory at UC Riverside; and Lihong Wang, M.D., and P. Murali Doraiswamy, M.B.B.S., FRCP, of Duke University – conducted a rigorous review of previous studies of PAIs, including randomized, controlled interventions with thousands of normal men and women as well as functional MRI scans in people with depressive symptoms.
“Over the last several decades, social psychology studies of flourishing individuals who are happy, optimistic and grateful have produced a lot of new information about the benefits of positive activity interventions on mood and well-being,” Lyubomirsky said.
However, such findings have not yet entered mainstream psychiatric practice.
“Very few psychiatrists collaborate with social scientists and no one in my field ever reads the journals where most happiness studies have been published. It was eye-opening for me as a psychopharmacologist to read this literature,” Doraiswamy said.
Lyubomirsky said that after she and Doraiswamy exchanged notes, “the obvious question that popped up was whether we can tap into the PAI research base to design interventions to galvanize clinically depressed people to move past the point of simply not feeling depressed to the point of flourishing.”
Although the paper found that positive activity interventions are effective in teaching individuals ways to increase their positive thinking, positive affect and positive behaviors, only two studies specifically tested these activities in individuals with mild depression.
In one of these studies, lasting improvements were found for six months. Effective PAIs used in the study included writing letters of gratitude, counting one’s blessings, practicing optimism, performing acts of kindness, meditating on positive feelings toward others, and using one’s signature strengths, all of which can be easily implemented into a daily routine at low cost.
People often underestimate the long-term impact of practicing brief, positive activities, Lyubomirsky said. For example, if a person gets 15 minutes of positive emotions from counting her blessings, she may muster the energy to attend the art class she’d long considered attending, and, while in class, might meet a friend who becomes a companion and confidant for years to come. In this way, even momentary positive feelings can build long-term social, psychological, intellectual, and physical skills and reserves.
The researchers’ review of brain imaging studies also led them to theorize that PAIs may act to boost the dampened reward/pleasure circuit mechanisms and reverse apathy – a key benefit that does not usually arise from treatment with medication alone.
“The positive activities themselves aren’t really new,” said Layous, the paper’s lead author. “After all, humans have been counting their blessings, dreaming optimistically, writing thank you notes, and doing acts of kindness for thousands of years. What’s new is the scientific rigor that researchers have applied to measuring benefits and understanding why they work.”
A major benefit of positive activities is that they are simple to practice and inexpensive to deliver.
“If we’re serious about tackling a problem as large as depression, we should be as concerned about the scalability of our solutions as much as their potency,” Chancellor said,
While PAIs appear to be a potentially promising therapy for mild forms of depression,” Doraiswamy cautioned, “they have not yet been fully studied in people with moderate to severe forms of depression. We need further studies before they can be applied to help such patients."
Kim Jobst, a physician and editor-in-chief of the Journal of Alternative and Complimentary Medicine, said the review provides one location in which to reference all relevant PAI findings to date, and includes recommendations that should prove useful to researchers, clinicians and the public. The journal is devoted to publishing research about novel and unconventional treatment approaches.
The research was supported by the authors themselves. Lyubomirsky’s research has been funded by a Templeton Positive Psychology Prize and the National Institute of Mental Health. Doraiswamy has received research grants from NIMH and served as an advisor/investigator to several pharmaceutical companies.
http://newsroom.ucr.edu
Practicing positive activities may serve as an effective, low-cost treatment for people suffering from depression, according to researchers at the University of California, Riverside and Duke University Medical Center.
In “Delivering Happiness: Translating Positive Psychology Intervention Research for Treating Major and Minor Depressive Disorders,” a paper that appears in the August 2011 issue of the Journal of Alternative and Complementary Medicine, the team of UCR and Duke psychology, neuroscience and psychopharmacology researchers proposed a new approach for treating depression – Positive Activity Interventions (PAI).
PAIs are intentional activities such as performing acts of kindness, practicing optimism, and counting one’s blessing gleaned from decades of research into how happy and unhappy people are different. This new approach has the potential to benefit depressed individuals who don’t respond to pharmacotherapy or are not able or willing to obtain treatment, is less expensive to administer, is relatively less time-consuming and promises to yield rapid improvement of mood symptoms, holds little to no stigma, and carries no side effects.
More than 16 million U.S. adults – about 8 percent of the population – suffer from either major or chronic depression. About 70 percent of reported cases either do not receive the recommended level of treatment or do not get treated at all, according to the National Institute of Mental Health. Globally, the World Health Organization estimates that depression affects more than 100 million people.
Although antidepressants can be lifesaving for some individuals, initial drug therapy produces full benefits in only 30 percent to 40 percent of patients. Even after trying two to four different drugs, one-third of people will remain depressed.
The research team – Kristin Layous and Joseph Chancellor, graduate students at UC Riverside; Sonja Lyubomirsky, professor of psychology and director of the Positive Psychology Laboratory at UC Riverside; and Lihong Wang, M.D., and P. Murali Doraiswamy, M.B.B.S., FRCP, of Duke University – conducted a rigorous review of previous studies of PAIs, including randomized, controlled interventions with thousands of normal men and women as well as functional MRI scans in people with depressive symptoms.
“Over the last several decades, social psychology studies of flourishing individuals who are happy, optimistic and grateful have produced a lot of new information about the benefits of positive activity interventions on mood and well-being,” Lyubomirsky said.
However, such findings have not yet entered mainstream psychiatric practice.
“Very few psychiatrists collaborate with social scientists and no one in my field ever reads the journals where most happiness studies have been published. It was eye-opening for me as a psychopharmacologist to read this literature,” Doraiswamy said.
Lyubomirsky said that after she and Doraiswamy exchanged notes, “the obvious question that popped up was whether we can tap into the PAI research base to design interventions to galvanize clinically depressed people to move past the point of simply not feeling depressed to the point of flourishing.”
Although the paper found that positive activity interventions are effective in teaching individuals ways to increase their positive thinking, positive affect and positive behaviors, only two studies specifically tested these activities in individuals with mild depression.
In one of these studies, lasting improvements were found for six months. Effective PAIs used in the study included writing letters of gratitude, counting one’s blessings, practicing optimism, performing acts of kindness, meditating on positive feelings toward others, and using one’s signature strengths, all of which can be easily implemented into a daily routine at low cost.
People often underestimate the long-term impact of practicing brief, positive activities, Lyubomirsky said. For example, if a person gets 15 minutes of positive emotions from counting her blessings, she may muster the energy to attend the art class she’d long considered attending, and, while in class, might meet a friend who becomes a companion and confidant for years to come. In this way, even momentary positive feelings can build long-term social, psychological, intellectual, and physical skills and reserves.
The researchers’ review of brain imaging studies also led them to theorize that PAIs may act to boost the dampened reward/pleasure circuit mechanisms and reverse apathy – a key benefit that does not usually arise from treatment with medication alone.
“The positive activities themselves aren’t really new,” said Layous, the paper’s lead author. “After all, humans have been counting their blessings, dreaming optimistically, writing thank you notes, and doing acts of kindness for thousands of years. What’s new is the scientific rigor that researchers have applied to measuring benefits and understanding why they work.”
A major benefit of positive activities is that they are simple to practice and inexpensive to deliver.
“If we’re serious about tackling a problem as large as depression, we should be as concerned about the scalability of our solutions as much as their potency,” Chancellor said,
While PAIs appear to be a potentially promising therapy for mild forms of depression,” Doraiswamy cautioned, “they have not yet been fully studied in people with moderate to severe forms of depression. We need further studies before they can be applied to help such patients."
Kim Jobst, a physician and editor-in-chief of the Journal of Alternative and Complimentary Medicine, said the review provides one location in which to reference all relevant PAI findings to date, and includes recommendations that should prove useful to researchers, clinicians and the public. The journal is devoted to publishing research about novel and unconventional treatment approaches.
The research was supported by the authors themselves. Lyubomirsky’s research has been funded by a Templeton Positive Psychology Prize and the National Institute of Mental Health. Doraiswamy has received research grants from NIMH and served as an advisor/investigator to several pharmaceutical companies.
http://newsroom.ucr.edu
Monkey See, Monkey Do? The Role of Mirror Neurons in Human Behavior
We are all familiar with the phrase “monkey see, monkey do” – but have we actually thought about what it means? Over the last two decades, neuroscience research has been investigating whether this popular saying has a real basis in human behavior.
Over twenty years ago, a team of scientists, led by Giacomo Rizzolatti at the University of Parma, discovered special brain cells, called mirror neurons, in monkeys. These cells appeared to be activated both when the monkey did something itself and when the monkey simply watched another monkey do the same thing.
The function of such mirror neurons in humans has since become a hot topic. In the latest issue of Perspectives on Psychological Science, a team of distinguished researchers debate whether the mirror neuron system is involved in such diverse processes as understanding speech, understanding the meaning of other people’s actions, and understanding other people’s minds.
This article presents some of the toughest questions asked about mirror neurons to date. The answers to those questions, guided by hundreds of research studies, clarify the limits of the function of mirror neurons in humans.
Over twenty years ago, a team of scientists, led by Giacomo Rizzolatti at the University of Parma, discovered special brain cells, called mirror neurons, in monkeys. These cells appeared to be activated both when the monkey did something itself and when the monkey simply watched another monkey do the same thing.
The function of such mirror neurons in humans has since become a hot topic. In the latest issue of Perspectives on Psychological Science, a team of distinguished researchers debate whether the mirror neuron system is involved in such diverse processes as understanding speech, understanding the meaning of other people’s actions, and understanding other people’s minds.
- Understanding Speech
- Understanding Actions
- Understanding Minds
This article presents some of the toughest questions asked about mirror neurons to date. The answers to those questions, guided by hundreds of research studies, clarify the limits of the function of mirror neurons in humans.
Suscribirse a:
Comentarios (Atom)


















